Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
Nat Microbiol ; 9(4): 976-987, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491273

RESUMO

In Mycobacterium tuberculosis, Rv3806c is a membrane-bound phosphoribosyltransferase (PRTase) involved in cell wall precursor production. It catalyses pentosyl phosphate transfer from phosphoribosyl pyrophosphate to decaprenyl phosphate, to generate 5-phospho-ß-ribosyl-1-phosphoryldecaprenol. Despite Rv3806c being an attractive drug target, structural and molecular mechanistic insight into this PRTase is lacking. Here we report cryogenic electron microscopy structures for Rv3806c in the donor- and acceptor-bound states. In a lipidic environment, Rv3806c is trimeric, creating a UbiA-like fold. Each protomer forms two helical bundles, which, alongside the bound lipids, are required for PRTase activity in vitro. Mutational and functional analyses reveal that decaprenyl phosphate and phosphoribosyl pyrophosphate bind the intramembrane and extramembrane cavities of Rv3806c, respectively, in a distinct manner to that of UbiA superfamily enzymes. Our data suggest a model for Rv3806c-catalysed phosphoribose transfer through an inverting mechanism. These findings provide a structural basis for cell wall precursor biosynthesis that could have potential for anti-tuberculosis drug development.


Assuntos
Mycobacterium tuberculosis , Fosfatos de Poli-Isoprenil , Mycobacterium tuberculosis/genética , Fosforribosil Pirofosfato/metabolismo , Antituberculosos/metabolismo , Parede Celular/metabolismo
2.
PLoS Pathog ; 19(5): e1011393, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37235600

RESUMO

To gain a better insight of how Copper (Cu) ions toxify cells, metabolomic analyses were performed in S. aureus strains that lacks the described Cu ion detoxification systems (ΔcopBL ΔcopAZ; cop-). Exposure of the cop- strain to Cu(II) resulted in an increase in the concentrations of metabolites utilized to synthesize phosphoribosyl diphosphate (PRPP). PRPP is created using the enzyme phosphoribosylpyrophosphate synthetase (Prs) which catalyzes the interconversion of ATP and ribose 5-phosphate to PRPP and AMP. Supplementing growth medium with metabolites requiring PRPP for synthesis improved growth in the presence of Cu(II). A suppressor screen revealed that a strain with a lesion in the gene coding adenine phosphoribosyltransferase (apt) was more resistant to Cu. Apt catalyzes the conversion of adenine with PRPP to AMP. The apt mutant had an increased pool of adenine suggesting that the PRPP pool was being redirected. Over-production of apt, or alternate enzymes that utilize PRPP, increased sensitivity to Cu(II). Increasing or decreasing expression of prs resulted in decreased and increased sensitivity to growth in the presence of Cu(II), respectively. We demonstrate that Prs is inhibited by Cu ions in vivo and in vitro and that treatment of cells with Cu(II) results in decreased PRPP levels. Lastly, we establish that S. aureus that lacks the ability to remove Cu ions from the cytosol is defective in colonizing the airway in a murine model of acute pneumonia, as well as the skin. The data presented are consistent with a model wherein Cu ions inhibits pentose phosphate pathway function and are used by the immune system to prevent S. aureus infections.


Assuntos
Cobre , Staphylococcus aureus , Animais , Camundongos , Staphylococcus aureus/metabolismo , Via de Pentose Fosfato , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo , Fosforribosil Pirofosfato/metabolismo , Adenina
3.
Cell Biochem Biophys ; 80(4): 699-709, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36201097

RESUMO

Phosphoribosyl pyrophosphate synthetase-1 (PRPS-1; EC 2.7.6.1.) catalyzes the binding of phosphate-group to ribose 5-phosphate, forming the 5-phosphoribosyl-1-pyrophosphate, which is necessary for the salvage pathways of purine and pyrimidine, pyridine nucleotide cofactors - NAD and NADP, the amino acids histidine and tryptophan biosynthesis. We aimed to investigate the impact of the different effectors on the activity of PRPS-1, to check the activity of the enzyme in vitro in a wide range of pHs and investigate some structural essentials of the enzyme, isolated from brain and liver. Molecular docking analyses were used to delineate the essentials of PRPS-1 structure, to find out the existence of enzyme effectors. Previously created by us kit was used for determination of the activity of PRPS-1 based on the formation of the inorganic phosphates (λ = 700 nm, Cary 60, Agilent, USA). Effectors impact on the activity of PRPS-1 was evaluated. In silico results of the effectors were later proven by in vitro experiments. For the first time biochemical essentials, including the existence of the multiple pockets, involvement of the amino acids into the processes of interactions with the effectors, evolutional of the sequence conservation, tissue depended Vmax differences were identified.


Assuntos
Fosforribosil Pirofosfato , Ribose-Fosfato Pirofosfoquinase , Difosfatos , Histidina , Simulação de Acoplamento Molecular , NAD , NADP , Nucleotídeos , Fosfatos , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Purinas/metabolismo , Piridinas , Pirimidinas , Ribose-Fosfato Pirofosfoquinase/metabolismo , Triptofano
4.
Cells ; 11(12)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35741038

RESUMO

Phosphoribosyl pyrophosphate synthetase (PRS EC 2.7.6.1) is a rate-limiting enzyme that irreversibly catalyzes the formation of phosphoribosyl pyrophosphate (PRPP) from ribose-5-phosphate and adenosine triphosphate (ATP). This key metabolite is required for the synthesis of purine and pyrimidine nucleotides, the two aromatic amino acids histidine and tryptophan, the cofactors nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), all of which are essential for various life processes. Despite its ubiquity and essential nature across the plant and animal kingdoms, PRPP synthetase displays species-specific characteristics regarding the number of gene copies and architecture permitting interaction with other areas of cellular metabolism. The impact of mutated PRS genes in the model eukaryote Saccharomyces cerevisiae on cell signalling and metabolism may be relevant to the human neuropathies associated with PRPS mutations. Human PRPS1 and PRPS2 gene products are implicated in drug resistance associated with recurrent acute lymphoblastic leukaemia and progression of colorectal cancer and hepatocellular carcinoma. The investigation of PRPP metabolism in accepted model organisms, e.g., yeast and zebrafish, has the potential to reveal novel drug targets for treating at least some of the diseases, often characterized by overlapping symptoms, such as Arts syndrome and respiratory infections, and uncover the significance and relevance of human PRPS in disease diagnosis, management, and treatment.


Assuntos
Fosforribosil Pirofosfato , Peixe-Zebra , Trifosfato de Adenosina/química , Animais , Humanos , NAD , Recidiva Local de Neoplasia , Fosforribosil Pirofosfato/metabolismo , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Peixe-Zebra/metabolismo
5.
Viruses ; 13(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960780

RESUMO

Broad-spectrum antiviral therapies hold promise as a first-line defense against emerging viruses by blunting illness severity and spread until vaccines and virus-specific antivirals are developed. The nucleobase favipiravir, often discussed as a broad-spectrum inhibitor, was not effective in recent clinical trials involving patients infected with Ebola virus or SARS-CoV-2. A drawback of favipiravir use is its rapid clearance before conversion to its active nucleoside-5'-triphosphate form. In this work, we report a synergistic reduction of flavivirus (dengue, Zika), orthomyxovirus (influenza A), and coronavirus (HCoV-OC43 and SARS-CoV-2) replication when the nucleobases favipiravir or T-1105 were combined with the antimetabolite 6-methylmercaptopurine riboside (6MMPr). The 6MMPr/T-1105 combination increased the C-U and G-A mutation frequency compared to treatment with T-1105 or 6MMPr alone. A further analysis revealed that the 6MMPr/T-1105 co-treatment reduced cellular purine nucleotide triphosphate synthesis and increased conversion of the antiviral nucleobase to its nucleoside-5'-monophosphate, -diphosphate, and -triphosphate forms. The 6MMPr co-treatment specifically increased production of the active antiviral form of the nucleobases (but not corresponding nucleosides) while also reducing levels of competing cellular NTPs to produce the synergistic effect. This in-depth work establishes a foundation for development of small molecules as possible co-treatments with nucleobases like favipiravir in response to emerging RNA virus infections.


Assuntos
Antimetabólitos/farmacologia , Antivirais/farmacologia , Vírus de RNA/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Amidas/farmacologia , Animais , Linhagem Celular , Sinergismo Farmacológico , Guanosina Trifosfato/metabolismo , Humanos , Metiltioinosina/farmacologia , Mutação/efeitos dos fármacos , Fosforribosil Pirofosfato/metabolismo , Pirazinas/farmacologia , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Viral/efeitos dos fármacos , RNA Viral/genética , Replicação Viral/efeitos dos fármacos
6.
Crit Rev Biochem Mol Biol ; 56(1): 1-16, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179964

RESUMO

The focus of this review is the human de novo purine biosynthetic pathway. The pathway enzymes are enumerated, as well as the reactions they catalyze and their physical properties. Early literature evidence suggested that they might assemble into a multi-enzyme complex called a metabolon. The finding that fluorescently-tagged chimeras of the pathway enzymes form discrete puncta, now called purinosomes, is further elaborated in this review to include: a discussion of their assembly; the role of ancillary proteins; their locus at the microtubule/mitochondria interface; the elucidation that at endogenous levels, purinosomes function to channel intermediates from phosphoribosyl pyrophosphate to AMP and GMP; and the evidence for the purinosomes to exist as a protein condensate. The review concludes with a consideration of probable signaling pathways that might promote the assembly and disassembly of the purinosome, in particular the identification of candidate kinases given the extensive phosphorylation of the enzymes. These collective findings substantiate our current view of the de novo purine biosynthetic metabolon whose properties will be representative of how other metabolic pathways might be organized for their function.


Assuntos
Complexos Multienzimáticos/metabolismo , Proteínas/metabolismo , Purinas/biossíntese , Transdução de Sinais/fisiologia , Monofosfato de Adenosina/metabolismo , Vias Biossintéticas , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Guanosina Monofosfato/metabolismo , Humanos , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Fosforribosil Pirofosfato/metabolismo , Fosforilação
7.
Sci Rep ; 10(1): 19907, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199755

RESUMO

Cisplatin is a mainstay of cancer chemotherapy. It forms DNA adducts, thereby activating poly(ADP-ribose) polymerases (PARPs) to initiate DNA repair. The PARP substrate NAD+ is synthesized from 5-phosphoribose-1-pyrophosphate (PRPP), and we found that treating cells for 6 h with cisplatin reduced intracellular PRPP availability. The decrease in PRPP was likely from (1) increased PRPP consumption, because cisplatin increased protein PARylation and PARP1 shRNA knock-down returned PRPP towards normal, and (2) decreased intracellular phosphate, which down-regulated PRPP synthetase activity. Depriving cells of a single essential amino acid decreased PRPP synthetase activity with a half-life of ~ 8 h, and combining cisplatin and amino acid deprivation synergistically reduced intracellular PRPP. PRPP is a rate-limiting substrate for purine nucleotide synthesis, and cisplatin inhibited de novo purine synthesis and DNA synthesis, with amino acid deprivation augmenting cisplatin's effects. Amino acid deprivation enhanced cisplatin's cytotoxicity, increasing cellular apoptosis and DNA strand breaks in vitro, and intermittent deprivation of lysine combined with a sub-therapeutic dose of cisplatin inhibited growth of ectopic hepatomas in mice. Augmentation of cisplatin's biochemical and cytotoxic effects by amino acid deprivation suggest that intermittent deprivation of an essential amino acid could allow dose reduction of cisplatin; this could reduce the drug's side effects, and allow its use in cisplatin-resistant tumors.


Assuntos
Aminoácidos/deficiência , Apoptose , Carcinoma Hepatocelular/patologia , Cisplatino/farmacologia , Neoplasias Hepáticas/patologia , Fosforribosil Pirofosfato/metabolismo , Animais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Chem Commun (Camb) ; 56(55): 7617-7620, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32515440

RESUMO

The enzyme ForT catalyzes C-C bond formation between 5'-phosphoribosyl-1'-pyrophosphate (PRPP) and 4-amino-1H-pyrazole-3,5-dicarboxylate to make a key intermediate in the biosynthesis of formycin A 5'-phosphate by Streptomyces kaniharaensis. We report the 2.5 Å resolution structure of the ForT/PRPP complex and locate active site residues critical for PRPP recognition and catalysis.


Assuntos
Carbono-Carbono Ligases/metabolismo , Fosforribosil Pirofosfato/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Carbono-Carbono Ligases/química , Domínio Catalítico , Cristalografia por Raios X , Modelos Químicos , Fosforribosil Pirofosfato/química , Ligação Proteica , Streptomyces/enzimologia
9.
ACS Synth Biol ; 9(7): 1813-1822, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32470291

RESUMO

l-Histidine is a functional amino acid with numerous therapeutic and ergogenic properties. It is one of the few amino acids that is not produced on a large scale by microbial fermentation due to the lack of an efficient microbial cell factory. In this study, we demonstrated the engineering of wild-type Escherichia coli to overproduce histidine from glucose. First, removal of transcription attenuation and histidine-mediated feedback inhibition resulted in 0.8 g/L histidine accumulation. Second, chromosome-based optimization of the expression levels of histidine biosynthesis genes led to a 4.75-fold increase in histidine titer. Third, strengthening phosphoribosyl pyrophosphate supply and rerouting the purine nucleotide biosynthetic pathway improved the histidine production to 8.2 g/L. Fourth, introduction of the NADH-dependent glutamate dehydrogenase from Bacillus subtilis and the lysine exporter from Corynebacterium glutamicum enabled the final strain HW6-3 to produce 11.8 g/L histidine. Finally, 66.5 g/L histidine was produced under fed-batch fermentation, with a yield of 0.23 g/g glucose and a productivity of 1.5 g/L/h. This is the highest titer and productivity of histidine ever reported from an engineered strain. Additionally, the metabolic strategies utilized here can be applied to engineering other microorganisms for the industrial production of histidine and related bioproducts.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Histidina/biossíntese , Engenharia Metabólica/métodos , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Corynebacterium glutamicum/metabolismo , Fermentação , Glutamato Desidrogenase/metabolismo , Lisina/metabolismo , Fosforribosil Pirofosfato/metabolismo , Nucleotídeos de Purina/biossíntese
10.
Biochemistry ; 59(13): 1361-1366, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32202416

RESUMO

The modularity of protein domains is well-known, but the existence of independent domains that confer function in RNA is less established. Recently, a family of RNA aptamers termed ykkC was discovered; they bind at least four ligands of very different chemical composition, including guanidine, phosphoribosyl pyrophosphate (PRPP), and guanosine tetraphosphate (ppGpp) (graphical abstract). Structures of these aptamers revealed an architecture characterized by two coaxial helical stacks. The first helix appears to be a generic scaffold, while the second helix forms the most contacts to the ligands. To determine if these two regions within the aptamer are modular units for ligand recognition, we swapped the ligand-binding coaxial stacks of a guanidine aptamer and a PRPP aptamer. This operation, in combination with a single mutation in the scaffold domain, achieved full switching of ligand specificity. This finding suggests that the ligand-binding helix largely dictates the ligand specificity of ykkC RNAs and that the scaffold coaxial stack is generally compatible with various ykkC ligand-binding modules. This work presents an example of RNA domain modularity comparable to that of a ligand-binding protein, showcasing the versatility of RNA as an entity capable of molecular evolution through adaptation of existing motifs.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/genética , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Ligantes , Modelos Moleculares , Conformação de Ácido Nucleico , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo
11.
Protein Expr Purif ; 169: 105587, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32001359

RESUMO

Prs (phosphoribosyl pyrophosphate synthase) is a broadly conserved protein that synthesises 5-phosphoribosyl 1-pyrophospate (PRPP); a substrate for biosynthesis of at least 10 enzymatic pathways including biosynthesis of DNA building blocks - purines and pyrimidines. In Escherichia coli, it is a protein of homo-hexameric quaternary structure, which can be challenging to work with, due to frequent aggregation and activity loss. Several studies showed brief purification protocols for various bacterial PRPP synthases, in most cases involving ammonium sulfate precipitation. Here, we provide a protocol for expression of E. coli Prs protein in Rosetta (DE3) and BL21 (DE3) pLysE strains and a detailed method for His-Prs and untagged Prs purification on nickel affinity chromatography columns. This protocol allows purification of proteins with high yield, purity and activity. We report here N-terminally His-tagged protein fusions, stable and active, providing that the temperature around 20 °C is maintained at all stages, including centrifugation. Moreover, we successfully applied this method to purify two enzyme variants with K194A and G9S alterations. The K194A mutation in conserved lysine residue results in protein variant unable to synthetize PRPP, while the G9S alteration originates from prs-2 allele variant which was previously related to thermo-sensitive growth. His-PrsG9S protein purified here, exhibited comparable activity as previously observed in-vivo suggesting the proteins purified with our protocol resemble their physiological state. The protocol for Prs purification showed here indicates guidance to improve stability and quality of the protein and to ensure more reliable results in further assays in-vitro.


Assuntos
Fosforribosil Pirofosfato/biossíntese , Proteínas Recombinantes de Fusão , Cromatografia de Afinidade , Clonagem Molecular/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Temperatura
12.
Biochemistry ; 58(5): 401-410, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30081631

RESUMO

The ykkC RNA motif was a long-standing orphan riboswitch candidate that has recently been proposed to encompass at least five distinct bacterial riboswitch classes. Most ykkC RNAs belong to the subtype 1 group, which are guanidine-I riboswitches that regulate the expression of guanidine-specific carboxylase and transporter proteins. The remaining ykkC RNAs have been organized into at least four major categories called subtypes 2a-2d. Subtype 2a RNAs are riboswitches that sense the bacterial alarmone ppGpp and typically regulate amino acid biosynthesis genes. Subtype 2b riboswitches sense the purine biosynthetic intermediate PRPP and frequently partner with guanine riboswitches to regulate purine biosynthesis genes. In this study, we examined ykkC subtype 2c RNAs, which are found upstream of genes encoding hydrolase enzymes that cleave the phosphoanhydride linkages of nucleotide substrates. Subtype 2c representatives mostly recognize adenosine and cytidine 5'-diphosphate molecules in either their ribose or deoxyribose forms (ADP, dADP, CDP, and dCDP). Other nucleotide-containing compounds, especially nucleoside 5'-triphosphates, are strongly rejected by some members of this putative riboswitch class. High ligand concentrations in vivo are predicted to turn on expression of hydrolase enzymes, which presumably function to balance cellular nucleotide pools. These results further showcase the striking functional diversity derived from the structural scaffold shared among all ykkC motif RNAs, which has been adapted to sense at least five different types of natural ligands. Moreover, riboswitches for nucleoside diphosphates provide additional examples of the numerous partnerships observed between natural RNA aptamers and nucleotide-derived ligands, including metabolites, coenzymes, and signaling molecules.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases/metabolismo , Fosforribosil Pirofosfato/metabolismo , RNA Bacteriano/metabolismo , Riboswitch/genética , Proteínas de Bactérias/genética , Sequência de Bases , Enterobacteriaceae/metabolismo , Hidrolases/genética , Leuconostoc mesenteroides/metabolismo , Conformação de Ácido Nucleico , RNA Bacteriano/genética
13.
J Cell Mol Med ; 22(12): 6202-6212, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30255549

RESUMO

Relapse-specific mutations in phosphoribosyl pyrophosphate synthetase 1 (PRPS1), a rate-limiting purine biosynthesis enzyme, confer significant drug resistances to combination chemotherapy in acute lymphoblastic leukemia (ALL). It is of particular interest to identify drugs to overcome these resistances. In this study, we found that PRPS1 mutant ALL cells specifically showed more chemosensitivity to 5-Fluorouracil (5-FU) than control cells, attributed to increased apoptosis of PRPS1 mutant cells by 5-FU. Mechanistically, PRPS1 mutants increase the level of intracellular phosphoribosyl pyrophosphate (PRPP), which causes the apt conversion of 5-FU to FUMP and FUTP in Reh cells, to promote 5-FU-induced DNA damage and apoptosis. Our study not only provides mechanistic rationale for re-targeting drug resistant cells in ALL, but also implicates that ALL patients who harbor relapse-specific mutations of PRPS1 might benefit from 5-FU-based chemotherapy in clinical settings.


Assuntos
Fluoruracila/farmacologia , Fosforribosil Pirofosfato/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Ribose-Fosfato Pirofosfoquinase/genética , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Células Jurkat , Lentivirus/genética , Camundongos , Fosforribosil Pirofosfato/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
14.
Biochemistry ; 57(29): 4357-4367, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29940105

RESUMO

Short-form ATP phosphoribosyltransferase (ATPPRT) is a hetero-octameric allosteric enzyme comprising four catalytic subunits (HisGS) and four regulatory subunits (HisZ). ATPPRT catalyzes the Mg2+-dependent condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate (PRPP) to generate N1-(5-phospho-ß-d-ribosyl)-ATP (PRATP) and pyrophosphate, the first reaction of histidine biosynthesis. While HisGS is catalytically active on its own, its activity is allosterically enhanced by HisZ in the absence of histidine. In the presence of histidine, HisZ mediates allosteric inhibition of ATPPRT. Here, initial velocity patterns, isothermal titration calorimetry, and differential scanning fluorimetry establish a distinct kinetic mechanism for ATPPRT where PRPP is the first substrate to bind. AMP is an inhibitor of HisGS, but steady-state kinetics and 31P NMR spectroscopy demonstrate that ADP is an alternative substrate. Replacement of Mg2+ by Mn2+ enhances catalysis by HisGS but not by the holoenzyme, suggesting different rate-limiting steps for nonactivated and activated enzyme forms. Density functional theory calculations posit an SN2-like transition state stabilized by two equivalents of the metal ion. Natural bond orbital charge analysis points to Mn2+ increasing HisGS reaction rate via more efficient charge stabilization at the transition state. High solvent viscosity increases HisGS's catalytic rate, but decreases the hetero-octamer's, indicating that chemistry and product release are rate-limiting for HisGS and ATPPRT, respectively. This is confirmed by pre-steady-state kinetics, with a burst in product formation observed with the hetero-octamer but not with HisGS. These results are consistent with an activation mechanism whereby HisZ binding leads to a more active conformation of HisGS, accelerating chemistry beyond the product release rate.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Psychrobacter/enzimologia , ATP Fosforribosiltransferase/química , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Cinética , Modelos Moleculares , Infecções por Moraxellaceae/microbiologia , Fosforribosil Pirofosfato/metabolismo , Conformação Proteica , Multimerização Proteica , Psychrobacter/química , Psychrobacter/metabolismo , Especificidade por Substrato
15.
Elife ; 72018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29877798

RESUMO

Two classes of riboswitches related to the ykkC guanidine-I riboswitch bind phosphoribosyl pyrophosphate (PRPP) and guanosine tetraphosphate (ppGpp). Here we report the co-crystal structure of the PRPP aptamer and its ligand. We also report the structure of the G96A point mutant that prefers ppGpp over PRPP with a dramatic 40,000-fold switch in specificity. The ends of the aptamer form a helix that is not present in the guanidine aptamer and is involved in the expression platform. In the mutant, the base of ppGpp replaces G96 in three-dimensional space. This disrupts the S-turn, which is a primary structural feature of the ykkC RNA motif. These dramatic differences in ligand specificity are achieved with minimal mutations. ykkC aptamers are therefore a prime example of an RNA fold with a rugged fitness landscape. The ease with which the ykkC aptamer acquires new specificity represents a striking case of evolvability in RNA.


Assuntos
Aptâmeros de Nucleotídeos/química , Conformação de Ácido Nucleico , RNA Bacteriano/química , Riboswitch , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Sequência de Bases , Cristalografia por Raios X , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Ligantes , Modelos Moleculares , Mutação , Motivos de Nucleotídeos , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Dobramento de RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
16.
Comput Biol Chem ; 74: 80-85, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29567489

RESUMO

The role of Mg2+ cofactor in orotate phosphoribosyltransferase (OPRT) catalyzed synthesis of orotidine monophosphate (OMP) from phosphoribosyl pyrophosphate (PRPP) and orotate (OA) in substrate binding and the influence of the identity of the divalent metal ion on the reaction mechanism were addressed in this study using quantum mechanics/molecular mechanics framework. Energetics of migration and binding of different substrate complexes in the active site cavity was established. A quantitative analysis of various processes indicated the reaction pathway to consist of complexation of Mg2+ with PRPP, migration of Mg2+-PRPP and OA towards the active site, binding of OA to OPRT, and binding of Mg2+-PRPP complex to OA-OPRT complex. The mechanism of the reaction was unaltered by the change in the identity of divalent metal ion. Experimentally reported inhibiting character of Co2+ was explained on the basis of large Co2+-PRPP binding and migration energies. Mg2+, Ca2+, Mn2+, Co2+ and Zn2+ ions were screened computationally to assess their inhibiting/activating characteristics. Trends obtained by our computational investigations were in correspondence with experimentally reported trends.


Assuntos
Metais Alcalinoterrosos/farmacologia , Metais Pesados/farmacologia , Orotato Fosforribosiltransferase/metabolismo , Teoria Quântica , Saccharomyces cerevisiae/enzimologia , Metais Alcalinoterrosos/química , Metais Pesados/química , Orotato Fosforribosiltransferase/química , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo
17.
Comput Biol Chem ; 74: 31-38, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29533816

RESUMO

Computational investigation of orotate phosphoribosyltransferase (OPRT) action, an enzymatic reaction between phosphoribosyl pyrophosphate (PRPP) and orotic acid (OA) to yield orotidine 5'-monophosphate (OMP), was carried out. Insights into the pathways of the substrate attack step of the reaction were developed under the quantum mechanics/molecular mechanics framework with S. cerevisiae strain as the representative enzyme bearer. Four pathways were proposed for PRPP and OA binding differing in the sequence of PRPP, OA and Mg2+ ion complexation with OPRT. The formation of Mg2+-OPRT complex was accompanied by a small energy change while the largest stabilization was observed for the formation of Mg2+-PRPP complex supporting the experimental observation of Mg2+-PRPP complex as the true substrate for the reaction. Formation of PRPP-OPRT complex was found to be energetically not probable rendering the pathway requiring Mg2+-OA complex not probable. Further, PRPP migration towards the active site was found to be energetically not favoured rendering the pathway involving Mg2+-OA complexation improbable. Migration of OA and Mg2+-PRPP complex towards the active site was found to be energetically probable with a large stabilization of the system when Mg2+-PRPP complex bound to the OA-OPRT complex. This conclusively proved the sequential binding of OA and Mg2+-PRPP complexes during OPRT action.


Assuntos
Orotato Fosforribosiltransferase/metabolismo , Fosforribosil Pirofosfato/metabolismo , Teoria Quântica , Saccharomyces cerevisiae/enzimologia , Uridina Monofosfato/análogos & derivados , Sítios de Ligação , Magnésio/metabolismo , Estrutura Molecular , Orotato Fosforribosiltransferase/química , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Uridina Monofosfato/metabolismo
18.
Biochemistry ; 56(5): 793-803, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28092443

RESUMO

Adenosine 5'-triphosphate phosphoribosyltransferase (ATPPRT) catalyzes the first step in histidine biosynthesis, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate to generate N1-(5-phospho-ß-d-ribosyl)-ATP and inorganic pyrophosphate. The enzyme is allosterically inhibited by histidine. Two forms of ATPPRT, encoded by the hisG gene, exist in nature, depending on the species. The long form, HisGL, is a single polypeptide chain with catalytic and regulatory domains. The short form, HisGS, lacks a regulatory domain and cannot bind histidine. HisGS instead is found in complex with a regulatory protein, HisZ, constituting the ATPPRT holoenzyme. HisZ triggers HisGS catalytic activity while rendering it sensitive to allosteric inhibition by histidine. Until recently, HisGS was thought to be catalytically inactive without HisZ. Here, recombinant HisGS and HisZ from the psychrophilic bacterium Psychrobacter arcticus were independently overexpressed and purified. The crystal structure of P. arcticus ATPPRT was determined at 2.34 Å resolution, revealing an equimolar HisGS-HisZ hetero-octamer. Steady-state kinetics indicate that both the ATPPRT holoenzyme and HisGS are catalytically active. Surprisingly, HisZ confers only a modest 2-4-fold increase in kcat. Reaction profiles for both enzymes cannot be distinguished by 31P nuclear magnetic resonance, indicating that the same reaction is catalyzed. The temperature dependence of kcat shows deviation from Arrhenius behavior at 308 K with the holoenzyme. Interestingly, such deviation is detected only at 313 K with HisGS. Thermal denaturation by CD spectroscopy resulted in Tm's of 312 and 316 K for HisZ and HisGS, respectively, suggesting that HisZ renders the ATPPRT complex more thermolabile. This is the first characterization of a psychrophilic ATPPRT.


Assuntos
ATP Fosforribosiltransferase/química , Aminoacil-tRNA Sintetases/química , Proteínas de Bactérias/química , Histidina/química , Proteínas de Transporte de Monossacarídeos/química , Psychrobacter/enzimologia , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Aclimatação , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Cristalografia por Raios X , Difosfatos/química , Difosfatos/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Histidina/biossíntese , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Psychrobacter/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
19.
PLoS One ; 10(8): e0135693, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284786

RESUMO

Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.


Assuntos
Regulação da Expressão Gênica em Archaea , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Metabolômica , Transcrição Gênica , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Gluconeogênese/genética , Halobacterium salinarum/crescimento & desenvolvimento , Mutação , Fosforribosil Pirofosfato/metabolismo , Purinas/biossíntese , Purinas/metabolismo
20.
Chembiochem ; 15(8): 1121-30, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24797455

RESUMO

Prolonged inhibition of nicotinamide phosphoribosyltransferase (NAMPT) is a strategy for targeting cancer metabolism. Many NAMPT inhibitors undergo NAMPT-catalyzed phosphoribosylation (pRib), a property often correlated with their cellular potency. To understand this phenomenon and facilitate drug design, we analyzed a potent cellularly active NAMPT inhibitor (GNE-617). A crystal structure of pRib-GNE-617 in complex with NAMPT protein revealed a relaxed binding mode. Consistently, the adduct formation resulted in tight binding and strong product inhibition. In contrast, a biochemically equipotent isomer of GNE-617 (GNE-643) also formed pRib adducts but displayed significantly weaker cytotoxicity. Structural analysis revealed an altered ligand conformation of GNE-643, thus suggesting weak association of the adducts with NAMPT. Our data support a model for cellularly active NAMPT inhibitors that undergo NAMPT-catalyzed phosphoribosylation to produce pRib adducts that retain efficient binding to the enzyme.


Assuntos
Antineoplásicos/farmacologia , Biocatálise , Citocinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Sulfonas/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Cães , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Compostos Heterocíclicos com 2 Anéis/química , Humanos , Modelos Moleculares , Estrutura Molecular , Nicotinamida Fosforribosiltransferase/metabolismo , Permeabilidade/efeitos dos fármacos , Fosforribosil Pirofosfato/metabolismo , Relação Estrutura-Atividade , Sulfonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...